Clinical Practice Procedures:
Cardiac/Transcutaneous cardiac pacing

Disclaimer and copyright
©2016 Queensland Government

All rights reserved. Without limiting the reservation of copyright, no person shall reproduce, store in a retrieval system or transmit in any form, or by any means, part or the whole of the Queensland Ambulance Service (‘QAS’) Clinical practice manual (‘CPM’) without the prior written permission of the Commissioner.

The QAS accepts no responsibility for any modification, redistribution or use of the CPM or any part thereof. The CPM is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

Under no circumstances will the QAS, its employees or agents, be liable for any loss, injury, claim, liability or damages of any kind resulting from the unauthorised use of, or reliance upon the CPM or its contents.

While effort has been made to contact all copyright owners this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome, please forward to:
Clinical.Guidelines@ambulance.qld.gov.au

<table>
<thead>
<tr>
<th>Date</th>
<th>April, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to Transcutaneous cardiac pacing.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to all QAS clinical staff.</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>April, 2018</td>
</tr>
</tbody>
</table>
Transcutaneous cardiac pacing (TCP) works as an artificial pacemaker, delivering repetitive electrical currents when the natural pacemaker has become blocked or dysfunctional. TCP is often beneficial for patients with symptomatic bradycardia, especially if the patient is unresponsive to atropine.\[^{1-3}\]

To have effect, the myocardium must be capable of generating cardiac output with the muscular contractions.

There are two modes of TCP:

- *demand pacing*
- *non-demand/asynchronous pacing*\[^{4}\]

Demand pacing is designed to sense the inherent QRS complex, delivering electrical stimuli only when needed. Demand pacing is the preferred mode of pacing for QAS clinicians and devices should be set to this mode.

Indications

- Symptomatic bradycardia (HR < 60)

Contraindications

TCP is contraindicated within the QAS for:

- asystole/PEA
- overdrive pacing of a ventricular dysrhythmia.

Complications

- Pain
- Discomfort
- Anxiety
- Failure to achieve electrical capture
Procedure – Transcutaneous pacing

1. Explain the procedure to the patient (cutaneous nerve stimulation and/or skeletal muscle contraction).

2. Establish IV access with a sodium chloride 0.9% running line.

3. Ensure adequate oxygenation, ventilation and basic cares are completed.

4. Position ECG electrodes. (refer to CPP: Cardiac monitoring)

5. Position defibrillation electrodes in the anterior-posterior position (all patient ages).

6. Anterior-lateral electrode placement may be considered if anterior-posterior placement is not possible.

7. Consider appropriate analgesia and sedation (refer to CPG: Pain management and/or CPP: Sedation – procedural)

Corpus3 ANTERIOR-POSTERIOR ELECTRODE PLACEMENT

- **Positive defibrillation electrode:** position electrode on the patient’s chest at the level of the bottom third of the sternum (between 4th and 5th ICS).

- **Negative defibrillation electrode:** position electrode on the patient’s back beside the vertebral column beneath the shoulder blade.
Procedure – Transcutaneous pacing

corpuls3: For comprehensive instructions refer to the corpuls3 operating instructions.

1. Press the Pacer key to turn the pacer on.
2. Confirm that ‘demand’ is displayed on the screen. If not, press the Mode key, followed by the Demand key.
3. Press Freq. (Frequency) key, if necessary rotate job (default setting is 70 bpm). The job will change the frequency in increments of 5 bpm.
4. Press the Intens. (Intensity) key.
5. Increase the intensity incrementally by rotating the job whilst observing the patient and assessing for electrical and mechanical capture. The job will change the intensity in increments of 5 mA.

Please note: pacing will begin automatically as soon as intensity of > 0 mA is selected.
Procedure – Transcutaneous pacing

LIFEPAK®12: For comprehensive instructions refer to the LIFEPAK®12 operating instructions.

1. Press PACER to turn pacer on. LED illuminates to confirm.
2. Select appropriate rate using arrows or press RATE and rotate SELECTOR. The RATE arrows change the rate in increments of 10. The Selector changes the rate in increments of 5.

3. Increase current incrementally using arrows or press CURRENT and rotate SELECTOR while observing patient and assessing for electrical and mechanical capture. The CURRENT arrows change the current in increments of 10 mA, the Selector changes the rate in increments of 5 mA.
Procedure – Transcutaneous pacing

Propaq® MD: For comprehensive instructions refer to the Propaq® MD operating instructions

1. Press **Pacer** button on front panel to display pacer settings.

2. Use the arrow keys to navigate to **Rate**, press the **select** button to set the **Pace Rate**.

3. Use the arrow keys to navigate to **Start Pacer**, press **Select** button to turn on. The Pacing window displays behind the Pacer Settings window.

4. In the Pacer Settings window, use the arrow keys and the **Select** button to adjust the pacer output while observing patient and assessing for electrical and mechanical capture. Current is adjustable in 10 mA increments when increasing the output, and in 5 mA when decreasing.

Pacing

<table>
<thead>
<tr>
<th>Rate</th>
<th>Output</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 ppm</td>
<td>95 mA</td>
<td>Demand</td>
</tr>
</tbody>
</table>
Additional information

- There is not evidence to support routine pacing in cardiac arrest.
- The most common error in TCP is failure to advance the current high enough to achieve electrical capture (see figure A).\(^1\)

FIGURE A: No electrical capture, insufficient pacing current.

![Image of figure A](image)

- Insufficient pacing current may also produce ECG signal distortion which can be mistaken for electrical capture (see figure B).

FIGURE B: False electrical capture, insufficient pacing current.

![Image of figure B](image)
Additional information

- In conscious patients begin with the pacing current set to zero mA and increase the mA until electrical capture is identified.
- Electrical capture is evidenced when the pacer spike is immediately followed by a wide QRS complex and a broad, tall T-wave and suppression of the patient’s ‘native’ QRS complexes *(see figure C).*\(^1\)
- The minimum current effective to obtain reliable mechanical capture should be used to minimise heart damage and patient discomfort. Reassess patient regularly to ensure mechanical capture is maintained.
- If the patient becomes intolerant of the procedure, consider further analgesia/sedation.
- In unconscious patients increase the current quickly to the maximum and adjust downward to the threshold when electrical capture is obtained.
- Check for signs of mechanical capture evidenced by presence of a pulse and signs of improved cardiac output. Both electrical and mechanical capture must occur for pacing to be successful.
- Common causes of failure to improve cardiac output despite electrical capture include hypoxia, acidosis, and physiological variables.
- TCP thresholds may change during pacing and loss of capture may result. Patients should never be left unattended during TCP.

FIGURE C: Electrical capture indicated by broad QRS AND T-wave following the pacer spike and ‘native’ QRS complexes are suppressed.