Clinical Practice Procedures:
Resuscitation/Cardiopulmonary resuscitation (CPR)

<table>
<thead>
<tr>
<th>Policy code</th>
<th>CPP_RS_CPR_0221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>February, 2021</td>
</tr>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach for cardiopulmonary resuscitation (CPR).</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to Queensland Ambulance Service (QAS) clinical staff.</td>
</tr>
<tr>
<td>Health care setting</td>
<td>Pre-hospital assessment and treatment.</td>
</tr>
<tr>
<td>Population</td>
<td>Applies to all ages unless stated otherwise.</td>
</tr>
<tr>
<td>Source of funding</td>
<td>Internal – 100%</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>February, 2024</td>
</tr>
</tbody>
</table>

While the QAS has attempted to contact all copyright owners, this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome. Please forward to: Clinical.Guidelines@ambulance.qld.gov.au

Disclaimer
The Digital Clinical Practice Manual is expressly intended for use by appropriately qualified QAS clinicians when performing duties and delivering ambulance services for, and on behalf of, the QAS.

The QAS disclaims, to the maximum extent permitted by law, all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs incurred for any reason associated with the use of this manual, including the materials within or referred to throughout this document being in any way inaccurate, out of context, incomplete or unavailable.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives V4.0 International License

You are free to copy and communicate the work in its current form for non-commercial purposes, as long as you attribute the State of Queensland, Queensland Ambulance Service and comply with the licence terms. If you alter the work, you may not share or distribute the modified work. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

For copyright permissions beyond the scope of this license please contact: Clinical.Guidelines@ambulance.qld.gov.au
The purpose of *cardiopulmonary resuscitation (CPR)* is to provide sufficient perfusion to preserve life until definitive procedures can be performed.

The general principles of CPR are as follows:

- provide good quality compressions
- minimise interruptions to chest compressions
- oxygenate the lungs
- avoid excessive ventilation

Interruption to chest compressions results in a fall in coronary artery perfusion pressure, decreasing the likelihood of defibrillation success.\[^1\-4\] Intubation attempts must not interrupt chest compressions.\[^4\]

Those performing chest compressions should be rotated regularly (e.g. every two minutes).

CPR must be restarted immediately after a defibrillation attempt, irrespective of any apparent success.

After two minutes of CPR, or earlier if signs of responsiveness become apparent, the presenting rhythm should be checked. If the rhythm is capable of providing spontaneous output then a pulse check can be performed.

Indications

- There are no signs of life:
 - unresponsive
 - not breathing normally
 - carotid pulse cannot be confidently palpated within 10 seconds, **OR**
- There are signs of inadequate perfusion:
 - unresponsive
 - pallor or central cyanosis
 - inadequate pulse, evidenced by:
 - less than 40 bpm in an adult, or child 1 year or older
 - less than 60 bpm in an infant less than 1 year old
 - less than 60 bpm in a newly born (following an appropriate ventilation strategy)

Contraindications

- Nil in this setting

Complications

- Using the presence or absence of a pulse as the primary indicator of cardiac arrest is unreliable.
- Injury to the chest (e.g. broken ribs) can occur in some patients.
Procedure – Cardiopulmonary resuscitation

Adult [1–6]

1. Ensure the patient is on a firm surface.
2. Place the heel of one hand on the lower half of the sternum and the other hand on top of the first.
3. Compress the sternum by one third the depth of the chest or at least five centimetres.
4. Compress at a rate of 100–120 compressions per minute.
5. Chest compressions should be performed with equal time spent on compression and release phases.
6. The compression to ventilation ratio is 30:2 (regardless of officer numbers) until the placement of an advanced airway (ETT or LMA). Ventilations can then occur at a rate of 6–10 per minute with continual chest compressions.[a] Ventilations should be timed with the release phase of compressions.

Child [2,7,8]

1. Ensure the patient is on a firm surface.
 - **Newly born and infant (less than 1 year):** Compress using either two fingers on the sternum, or two thumbs with the fingers surrounding the thorax and supporting the back.

 - **Method 1:**
 - Two fingers on the sternum

 - **Method 2:**
 - Two thumbs on the sternum and fingers surrounding the thorax
Procedure – Cardiopulmonary resuscitation

- **Younger child (1–8 years):** The heel of one hand is used.
- **Older child (9–12 years):** Two hand technique can be used, similar to the adult.

2. Compress the sternum by one third the depth of the chest wall.

3. Compression to ventilation ratio is 30:2 for 1 officer/15:2 for 2 officer CPR. This is done until the placement of an advanced airway (ETT or LMA). Ventilations then occur at a rate of 12–14 per minute with continual chest compressions. Ventilations should be timed to coincide with the release phase of compressions.
Procedure – Cardiopulmonary resuscitation

Newly born (immediately postpartum)[1,8]

1. Ensure the patient is on a firm surface.
2. Compress over the lower sternum.
3. The two thumb technique is preferred unless this impedes other procedures, in which case, the two finger technique is acceptable.
4. Compress the sternum by one third the depth of the chest.
5. The compression to ventilation ratio is 3:1. A half second pause after each third compression will allow time for an appropriate assisted ventilation. Co-ordination is required to ensure the assisted ventilation does not occur simultaneously with a compression.
6. Although not as tiring as for older child and adult CPR, it is still recommended that those performing chest compressions are rotated regularly.
7. CPR should be performed for at least 30 seconds, between any pause to assess for improvement in spontaneous heart rate or cardiac output.

Additional information

- There is no evidence to suggest a compression rate of over 120 per minute has any additional benefit.[4]
- Effective, good quality compressions cannot be maintained when moving or extricating a patient. If extrication is necessary clinicians should plan ahead to minimise interruptions to compressions.
- Mechanical Chest Compression Devices (MCCD) are regularly used by industrial first aids and privatised paramedic services. Unless the MCCD is causing harm or adverse events, it must remain in position and operational for the duration of the cardiac arrest. If transport is required, the person who applied the MCCD should accompany the device to hospital.