Clinical Practice Procedures: Assessment/Oximetry – pulse

<table>
<thead>
<tr>
<th>Policy code</th>
<th>CPP_AS_OP_0417</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>April, 2017</td>
</tr>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to undertaking oximetry – pulse.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to Queensland Ambulance Service (QAS) clinical staff.</td>
</tr>
<tr>
<td>Health care setting</td>
<td>Pre-hospital assessment and treatment.</td>
</tr>
<tr>
<td>Population</td>
<td>Applies to all ages unless stated otherwise.</td>
</tr>
<tr>
<td>Source of funding</td>
<td>Internal – 100%</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>April, 2020</td>
</tr>
</tbody>
</table>

While the QAS has attempted to contact all copyright owners, this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome. Please forward to: Clinical.Guidelines@ambulance.qld.gov.au

Disclaimer

The Digital Clinical Practice Manual is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

The QAS disclaims, to the maximum extent permitted by law, all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs incurred for any reason associated with the use of this manual, including the materials within or referred to throughout this document being in any way inaccurate, out of context, incomplete or unavailable.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives V4.0 International License

You are free to copy and communicate the work in its current form for non-commercial purposes, as long as you attribute the State of Queensland, Queensland Ambulance Service and comply with the licence terms. If you alter the work, you may not share or distribute the modified work. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

For copyright permissions beyond the scope of this license please contact: Clinical.Guidelines@ambulance.qld.gov.au
Oximetry – pulse

Pulse oximetry estimates the oxygen saturation in arterial blood (SaO₂), by directing both red and infrared light from two LEDs through a patient’s translucent fleshy body site (usually a finger, toe or earlobe). The absorption of the two wavelengths differs significantly dependant on the level of haemoglobin oxygenation and the pulse oximeter translates this ratio into a percentage (SpO₂).[1]

It is important to consider the relationship between blood oxygenation and measurable haemoglobin saturation when interpreting pulse oximetry.

Indications

- To determine patient oxygen saturation

Contraindications

- Nil in this setting

Complications

The reliability of SpO₂ readings depends on the following factors:

- correct sensor size and placement
- adequate arterial blood pulsation through the sensor site

Inaccurate pulse oximetry readings may occur when the following factors are present:

- excessive patient movement
- exposure to ambient light
- dirt or nail polish under the sensor site
- methaemoglobinaemia
- carbon monoxide
- insufficient amplitude on the pulsing pleth wave
Procedure – Oximetry – pulse

1. Ensure SpO₂ cable is connected (excludes FERNO Fingertip Pulse Oximeter) and the sensor is placed on the patient.

2. Observe the pulse bar/pleth wave for amplitude; this indicates relative signal strength.

3. Note the SpO₂ reading and document accordingly.

Additional information

- Any digit (finger or toe) may be used to obtain an SpO₂ reading.
- The SpO₂ of arterial blood is usually 94–100%.

Additional information (cont.)

- QAS oxygen saturation monitors are unable to differentiate between carboxyhaemoglobin and oxyhaemoglobin[1] therefore patients with carbon monoxide poisoning are to be administered the maximum oxygen dose irrespective of SpO₂. (See DTP: Oxygen)
- Pulse oximetry is not a complete measure of respiratory or circulatory sufficiency.
- A small change in saturations (e.g. a drop in SpO₂ 97% to 90%) represents a large change in blood oxygenation (PaO₂ 100 to 60 mmHg).

Oxygen dissociation curve [2-3]

- 100
- 95.8
- 50
- 25.8
- 40
- 80
- 120

Oxygen partial pressure (PaO₂ mmHg)

Oxygen dissociation curve [2,3]