Clinical Practice Procedures:
Assessment/Oximetry – pulse

Disclaimer and copyright
©2016 Queensland Government

All rights reserved. Without limiting the reservation of copyright, no person shall reproduce, store in a retrieval system or transmit in any form, or by any means, part or the whole of the Queensland Ambulance Service (‘QAS’) Clinical practice manual (‘CPM’) without the prior written permission of the Commissioner.

The QAS accepts no responsibility for any modification, redistribution or use of the CPM or any part thereof. The CPM is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

Under no circumstances will the QAS, its employees or agents, be liable for any loss, injury, claim, liability or damages of any kind resulting from the unauthorised use of, or reliance upon the CPM or its contents.

While effort has been made to contact all copyright owners this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome, please forward to: Clinical.Guidelines@ambulance.qld.gov.au

<table>
<thead>
<tr>
<th>Date</th>
<th>April, 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to undertaking Oximetry – pulse.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to all QAS clinical staff.</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>April, 2020</td>
</tr>
<tr>
<td>Information security</td>
<td>This document has been security classified using the Queensland Government Information Security Classification Framework (QGISC) as UNCLASSIFIED and will be managed according to the requirements of the QGISF.</td>
</tr>
</tbody>
</table>

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Pulse oximetry estimates the oxygen saturation in arterial blood (SaO₂), by directing both red and infrared light from two LEDs through a patient's translucent fleshy body site (usually a finger, toe or earlobe). The absorption of the two wavelengths differs significantly dependant on the level of haemoglobin oxygenation and the pulse oximeter translates this ratio into a percentage (SpO₂).[1]

It is important to consider the relationship between blood oxygenation and measurable haemoglobin saturation when interpreting pulse oximetry.

Indications
- To determine patient oxygen saturation

Contraindications
- Nil in this setting

Complications

The reliability of SpO₂ readings depends on the following factors:
- correct sensor size and placement
- adequate arterial blood pulsation through the sensor site

Inaccurate pulse oximetry readings may occur when the following factors are present:
- excessive patient movement
- exposure to ambient light
- dirt or nail polish under the sensor site
- methaemoglobinaemia
- carbon monoxide
- insufficient amplitude on the pulsing pleth wave
Procedure – Oximetry – pulse

1. Ensure SpO₂ cable is connected (excludes FERNO Fingertip Pulse Oximeter) and the sensor is placed on the patient.
2. Observe the pulse bar/pleth wave for amplitude; this indicates relative signal strength.
3. Note the SpO₂ reading and document accordingly.

Additional information

- Any digit (finger or toe) may be used to obtain an SpO₂ reading.
- The SpO₂ of arterial blood is usually 94–100%.

Additional information (cont.)

- QAS oxygen saturation monitors are unable to differentiate between carboxyhaemoglobin and oxyhaemoglobin[1] therefore patients with carbon monoxide poisoning are to be administered the maximum oxygen dose irrespective of SpO₂. (See DTP: Oxygen)
- Pulse oximetry is not a complete measure of respiratory or circulatory sufficiency.
- A small change in saturations (e.g. a drop in SpO₂ 97% to 90%) represents a large change in blood oxygenation (PaO₂ 100 to 60 mmHg).

[1] Oxygen dissociation curve [2,3]