Clinical Practice Procedures: Assessment/Waveform capnography

Disclaimer and copyright
©2016 Queensland Government

All rights reserved. Without limiting the reservation of copyright, no person shall reproduce, store in a retrieval system or transmit in any form, or by any means, part or the whole of the Queensland Ambulance Service (‘QAS’) Clinical practice manual (‘CPM’) without the prior written permission of the Commissioner.

The QAS accepts no responsibility for any modification, redistribution or use of the CPM or any part thereof. The CPM is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

Under no circumstances will the QAS, its employees or agents, be liable for any loss, injury, claim, liability or damages of any kind resulting from the unauthorised use of, or reliance upon the CPM or its contents.

While effort has been made to contact all copyright owners this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome, please forward to: Clinical.Guidelines@ambulance.qld.gov.au

<table>
<thead>
<tr>
<th>Date</th>
<th>April, 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to Waveform capnography.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to all QAS clinical staff.</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>April, 2019</td>
</tr>
<tr>
<td>Information security</td>
<td>This document has been security classified using the Queensland Government Information Security Classification Framework (QGISCf) as UNCLASSIFIED and will be managed according to the requirements of the QGISF.</td>
</tr>
</tbody>
</table>

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Waveform capnography is the continuous measurement of exhaled carbon dioxide (CO₂). This is displayed graphically as a capnogram (waveform) representing CO₂ throughout the respiratory cycle. End tidal CO₂ (EtCO₂) is the peak value at the end of each exhalation, and this is displayed numerically in mmHg.[1–3]

Measurement of EtCO₂ in patients with an advanced airway is an effective, non-invasive indicator of cardiac output during CPR, and may be an early indicator of ROSC.[4–5]

Capnography will provide objective evidence of breathing patterns and pre-empt any reduction in oxygen saturations. It provides real-time monitoring and readily detects apnoea or respiratory depression.[6]

Waveform EtCO₂ monitoring is mandatory to confirm ETT placement and throughout subsequent ventilation.[3,7]

At depths > 380 m (1250 ft) below sea level the LIFEPAK® 12 waveform capnography is unable to be used due to mechanical error. In this setting (ie. underground mining operations such as Mt Isa) the corpuls³ is the mandatory alternative for confirmation of correct ETT placement.[3,7]

Indications
- CPR
- Sedation and procedural sedation
- Endotracheal intubation (placement confirmation)
- Ongoing monitoring of ventilation

Contraindications
- Nil in this setting

Complications
- When performing effective CPR during cardiac arrest, EtCO₂ values are not to be used to vary IPPV from the recommended rate.[3]
Procedure for capnography monitoring

1. Open the CO2 tubing connector door and connect the EtCO2 sample tube by turning the tubing clockwise.
2. When using a BVM, LMA or ETT, attach the EtCO2 sample tube airway adaptor to the breathing circuit, ensuring that a bacterial/viral filter is connected on the ‘patient’ side.
3. It is mandatory that continuous waveform EtCO2 is working and included in the circuit prior to intubation.
4. Carefully route the EtCO2 sample tube to avoid patient entanglement or strangulation.
5. Confirm capnography values are displayed.
6. If the EtCO2 sample tube becomes contaminated or blocked, replace it immediately.
7. EtCO2 sample tubes are single-patient, one-time use only, and must be disposed of appropriately after use. Do not clean or reuse sample tubes.
Procedure – Waveform capnography

Additional information

- In cardiac arrest, tracheal placement of the ETT must be confirmed using capnography. If there is a complete absence of EtCO₂ (or if the capnography device becomes unserviceable) the ETT must be removed, and the failed intubation algorithm is to be commenced.[3,4]

- In non-cardiac arrest situations, tracheal placement of the ETT must be confirmed and monitored continually with capnography. If the capnograph indicates that tracheal placement cannot be confirmed, the ETT must be removed and the failed intubation drill is to be commenced.[4,6]

- In situations where IPPV is provided without an ETT, (i.e. when using a BVM or LMA), capnography is highly desirable and it should be connected as soon as other urgent priorities allow.[7]

- QAS clinicians must be familiar with the operating instructions, with particular attention to warnings, alarms and troubleshooting.

Normal capnography

A normal capnograph is present when the patient:

- is spontaneously breathing or adequately ventilated
- has normal cardiac output
- has normal metabolic function

Endotracheal tube in the oesophagus

Oesophageal intubation may be confirmed by:

- an absence of waveform and EtCO₂
- small transient diminishing waveforms
Reduced EtCO₂ levels

Possible causes:
- shock
- pulmonary embolus
- effective CPR being performed during cardiac arrest

Sudden significant increase in EtCO₂

Possible causes:
- return of spontaneous circulation
Absent EtCO\textsubscript{2} levels and waveform

Possible causes:
- no metabolic activity
- no CPR in cardiac arrest
- exsanguination / profound shock
- equipment failure
- apnoea
- airway obstruction
- oesophageal placement

Inadequate seal around endotracheal tube

Possible causes:
- a leaky or deflated endotracheal or tracheostomy cuff
- an artificial airway that is too small for the patient
Increased EtCO₂ levels from normal

Possible causes:
- respiratory depression/failure
- inadequate respiratory rate and/or tidal volume
- increased CO₂ production through increased metabolic rate or temperature or reperfusion of ischaemic tissue

Decreased EtCO₂ levels from normal

Possible causes:
- inadequate respiratory rate and/or tidal volume
- diminished CO₂ production through decreased metabolic rate
- falling cardiac output
Obstruction in breathing circuit or airway

Possible causes:
• obstruction in the expiratory breathing circuit
• presence of a foreign body in upper airway
• partially kinked or occluded artificial airway
• bronchospasm

Increased EtCO₂ values towards normal

Possible causes:
• restoration of normal respiratory rate and/or tidal volume
• cardiac output improved
• improved integrity of airway seal (BVM/LMA/ETT)
Curare cleft

Possible causes:
- inadequate or ‘lightening’ of paralysis

Decreasing EtCO₂ levels towards normal

Possible causes:
- restoration of normal metabolism/CO₂ production
- normalised respiratory rate and/or tidal volume