Clinical Practice Procedures: Trauma/Thoracotomy

Disclaimer and copyright

©2018 Queensland Government

All rights reserved. Without limiting the reservation of copyright, no person shall reproduce, store in a retrieval system or transmit in any form, or by any means, part or the whole of the Queensland Ambulance Service ('QAS') Clinical practice manual ('CPM') without the prior written permission of the Commissioner.

The QAS accepts no responsibility for any modification, redistribution or use of the CPM or any part thereof. The CPM is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

Under no circumstances will the QAS, its employees or agents, be liable for any loss, injury, claim, liability or damages of any kind resulting from the unauthorised use of, or reliance upon the CPM or its contents.

While effort has been made to contact all copyright owners this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome, please forward to: Clinical.Guidelines@ambulance.qld.gov.au

<table>
<thead>
<tr>
<th>Date</th>
<th>March, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to the Thoracotomy.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to all QAS clinical staff.</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>March, 2021</td>
</tr>
<tr>
<td>Information security</td>
<td>This document has been security classified using the Queensland Government Information Security Classification Framework (QGISCF) as UNCLASSIFIED and will be managed according to the requirements of the QGISF.</td>
</tr>
</tbody>
</table>

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Thoracotomy

A thoracotomy is a surgically invasive procedure performed by trained physicians to maximise the chance of survival in traumatic cardiac arrests, most commonly following penetrating trauma.

Pre-hospital thoracotomy is only to be performed when the procedure is unable to be commenced in a hospital emergency department or operating theatre within 10 minutes from loss of signs of life.

It is essential that the decision to perform a thoracotomy is made within 20 seconds of assessing the patient and establishing the time of loss of signs of life.

Reported thoracotomy survival rates are between 7.4 to 18%[1] with favourable neurological outcomes being documented in up to 92.4% of survivors when the procedure is performed within 10 minutes from loss of signs of life.

Contents of thoracotomy set

- Rib spreaders
- Bone cutters
- Shears
- Tissue forceps
- Straight scissors
- Mosquito clamp

Indications

Absolute indications:
- Penetrating torso trauma from a sharp instrument with loss of signs of life for less than 10 minutes
- Blunt thoracic trauma with loss of signs of life for less than 10 minutes; AND pericardial tamponade with cardiac activity on FAST ultrasound

Relative indications:
- Gunshot injury to torso with pericardial tamponade AND/OR cardiac activity with loss of signs of life for less than 10 minutes
- Extremity / neck trauma with loss of signs of life for less than 5 minutes

Signs of life are defined as *any* of the following:
- Pupillary response
- Ventilator effort
- Carotid pulse
- Palpable BP
- Extremity movement
- Cardiac electrical activity.

Contraindications

- Obvious non survivable injury
- Current cardiac output
- Loss of sign of life for longer than 10 minutes
Complications

- Infection
- Transection of the phrenic nerve
- Inadvertent ligation of the coronary arteries

PROCEDURE

1. Perform bilateral thoracostomies in the 4th or 5th intercostal space anterior to the mid axillary line, with the injured side completed first. This is to exclude tension haemo/pneumothorax as a cause of the loss of signs of life.

2. Connect the thoracostomies with a deep swallow shaped skin incision following the 4th or 5th intercostal space. The incision should cut down to the fat/chest wall.

3. Gently insert sterile shears into one of the thoracostomy incisions and cut through all layers of the intercostal muscles and pleura, cutting towards the sternum. Use the pressure against the lower ribs to open up the space so as to facilitate the cutting plane. Perform this on the left and right sides leaving only a sternal bridge intact between the two anterolateral thoracotomies.

4. Perform a finger sweep under the sternum to free up any tissue, especially to ensure the pericardium is not adherent.
5. Gently cut through the sternum with bone cutters or shears.

6. Remove any connective tissue, fat and remnants of the thymus, which presents like a cobweb between the sternum and pericardium.

7. Open the ‘clam shell’ using the self-retaining rib spreaders from the thoracotomy set, with the adjustment mechanism on the right side of the body.

The rib spreaders should be opened to its full extent to provide adequate exposure of the chest cavity with full access to all areas. If exposure is inadequate, the incisions may need to be extended posteriorly.
8. Identify the heart; if a tamponade is present the pericardium will look tense, enlarged and purplish/blue in colour.

9. Using forceps, raise a tent of pericardium on the anterior surface of the heart and cut a small vertical hole. Carefully extend the hole vertically with scissors, using fingers on the underside to stop the incision reaching the reflection at the ascending aorta.

10. Evacuate all the blood and clot, deliver the heart from the pericardium and then systematically inspect the heart for the site of bleeding (including the posterior surface). The superior mediastinal structures can be kinked as the heart is reflected forward during this inspection so minimise the angle and duration of the procedure to prevent structural damage and cessation of blood flow.

11. One of three scenarios are now likely:
 a) The heart will begin to beat spontaneously with a return of cardiac output. In this situation any cardiac wounds should be closed (see #13).
 b) The heart begins to beat slowly with a considerably reduced cardiac output. In this situation wounds should be closed quickly, then attempt to improve cardiac output with supplementary internal cardiac massage and consideration for inotropic support.
 c) The heart remains in asystole. In this case, wounds should be quickly closed and then attempts made to restart the heart. Simply flicking the heart may produce a return of contractions.

If VF present:
 - In the case of coarse VF – remove rib spreaders, close the chest, apply electrodes to chest wall and defibrillate.
 - In the case of fine VF – continue quality internal massage until coarse VF or spontaneous activity returns. Defibrillate for coarse VF as above.
 - Before defibrillating ensure there are no blood pools/fluids as these may cause arcing.
12. Two handed cardiac massage is the preferred technique of providing internal cardiac compressions. Cup the left hand under the heart. The right hand is applied over the anterior surface of the heart. The heart muscle is very easily damaged, so flat hand surface compression is essential. A ‘milking’ compression technique should be used. Aim for a rate of 100 beats per minute.

It is important to remember the following points while performing cardiac compression:

a) Perform compressions with the entire palmar surface of the fingers. Avoid fingertip pressure.

b) Adjust the force of compression so that it is perpendicular to the plane of the septum. The anterior descending coronary artery is located over the interventricular septum; this is a helpful landmark to orient your hand properly.

c) Position the fingers so that the coronary arteries will not be occluded.

d) Venous filling of the heart is especially sensitive to position changes. Without lifting it too far, maintain a relatively normal anatomic position of the heart to prevent kinking of the vena cava and pulmonary veins. It is essential to completely relax the heart between compressions.
13. Control any bleeding:

a) Small wounds of 1 cm or less can be left if there is limited blood loss, however if bleeding is significant they should be sutured/stapled or occluded with a finger. Be careful not to insert a finger into the incision as this may extend the wound.

 b) Wounds adjacent to coronary arteries should be treated with caution. If the artery is distal then it and the distal myocardium can be sacrificed if necessary otherwise either a mattress suture should be used or occlude the wound with a finger. Skin staples should be used primarily for temporary wound closure. Handheld 1/0 silk is also available to insert interrupted sutures if stapling is not successful.

 c) Although the use of Foley catheters may be considered, placement may cause the wound to extend. Plugging the wound with a finger or pack may be preferable.

 d) Ideally, a second operator should provide digital pressure to the descending aorta.

14. Fluid load the patient once bleeding sites have been stemmed. The preferred fluid is warmed blood.

15. Internal cardiac massage and repeated adrenaline (epinephrine) doses should be continued until appropriate myocardial activity is achieved.

16. If the procedure is successful the internal mammary arteries may begin to bleed and require closure.

17. Anaesthetise the patient as required; be aware that these patients are extremely sensitive to any sedative or analgesic medications.

18. If there is no cardiac output 20 minutes after commencement of thoracotomy, resuscitation efforts should be ceased.

Additional information

- Care must be taken for the psychological effects upon both clinicians, emergency services staff and bystanders
- The potential for exposure to blood and body fluids is **HIGH**. All precautions that serve to minimise risk to the clinician and patient are to be applied, including wearing of appropriate PPE.
- Securing an airway with an ETT or LMA or gaining IV access should not delay performing a thoracotomy. These tasks should be delegated to other paramedics on scene.
- Clinicians should be ‘double gloved’ with sterile gloves on the outside.
- If cardiac output is restored following thoracostomies, the thoracotomy procedure is to be immediately ceased.
- Bleeding from the Mammary Arteries can be controlled by the application of mosquito forceps.
- All pre-hospital thoracotomies are a mandatory audit case and will also be referred for external review by an experienced trauma surgeon.
- The role of pre-hospital thoracotomy for blunt traumatic cardiac arrest is reserved for patients with a pericardial tamponade confirmed by ultrasound where thoracic aortic compression may be of benefit. Routine thoracotomy for blunt trauma cardiac arrest is yet to show any survival benefit.[3,7]
- The **rib spreaders** and **bone cutters** are re-usable medical instruments that require reprocessing and sterilisation in accordance with the QAS Infection Control Framework.