Drug Therapy Protocols: Oxygen

Disclaimer and copyright
©2016 Queensland Government

All rights reserved. Without limiting the reservation of copyright, no person shall reproduce, store in a retrieval system or transmit in any form, or by any means, part or the whole of the Queensland Ambulance Service (‘QAS’) Clinical practice manual (‘CPM’) without the prior written permission of the Commissioner.

The QAS accepts no responsibility for any modification, redistribution or use of the CPM or any part thereof. The CPM is expressly intended for use by QAS paramedics when performing duties and delivering ambulance services for, and on behalf of, the QAS.

Under no circumstances will the QAS, its employees or agents, be liable for any loss, injury, claim, liability or damages of any kind resulting from the unauthorised use of, or reliance upon the CPM or its contents.

While effort has been made to contact all copyright owners this has not always been possible. The QAS would welcome notification from any copyright holder who has been omitted or incorrectly acknowledged.

All feedback and suggestions are welcome, please forward to: Clinical.Guidelines@ambulance.qld.gov.au

<table>
<thead>
<tr>
<th>Date</th>
<th>April, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To ensure a consistent procedural approach to Oxygen administration.</td>
</tr>
<tr>
<td>Scope</td>
<td>Applies to all QAS clinical staff.</td>
</tr>
<tr>
<td>Author</td>
<td>Clinical Quality & Patient Safety Unit, QAS</td>
</tr>
<tr>
<td>Review date</td>
<td>April, 2018</td>
</tr>
</tbody>
</table>

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Oxygen

Drug class
Gas

Pharmacology
A colourless, odourless gas essential for the production of cellular energy.

Metabolism
N/A.

Indications
- A wide range of conditions resulting in, or potentially resulting in systemic and/or localised hypoxia or hypoxaemia as listed in tables 1–4 of this DTP.

Contraindications
- Known paraquat poisoning with SpO₂ ≥ 88
- History of bleomycin therapy with SpO₂ ≥ 88

Precautions
- Patients with paraquat poisoning or bleomycin lung injury may be harmed by supplemental oxygen. Avoid oxygen unless the patient is hypoxaemic – target SpO₂ 88–92%
- Prolonged administration to premature neonates

Side effects
- Hypoventilation in some COPD patients with hypoxic drive.
- Drying of airway mucous membranes
Presentation
- Size C Cylinder, 450 L *medical oxygen*
- Size D Cylinder, 1600 L *medical oxygen*

## Onset	Duration	Half-life
Immediate | N/A | N/A

Special notes \[1–5\]
- The administration of oxygen to correct hypoxaemia is evidence based. Severe hypoxaemia is harmful.\[1\]
- Diving accidents are **NOT** covered by this DTP – officers are to administer high flow oxygen.
- QAS oxygen saturation monitors are unable to differentiate between carboxyhaemoglobin and oxyhaemoglobin, therefore patients with carbon monoxide poisoning are to be administered the maximum oxygen dose irrespective of SpO\(_2\) readings.
- If a patient with COPD sustains or develops a critical illness/injury, the target saturation for the patient’s critical illness takes priority (see Table 1)
- For patients with COPD, nebulised salbutamol is to be delivered via nebuliser mask at a rate of 6 L/minute. For all other patients 8 L/minute is appropriate for nebulising drugs.

Schedule
- Unscheduled.

Routes of administration
Inhalation (INH)
- Nasal cannulae (NC)
- Nebuliser mask (NEB)
- Simple face mask (SFM)
- Non-rebreather reservoir mask (NRBM)
- Bag-valve mask (BVM)
- Laryngeal mask airway (LMA)
- Endotracheal tube (ETT)
Critical illness requiring HIGH levels of supplemental oxygen

SpO2 < 85%: 15 L/minute (NRBM)
- Administer until a reliable SpO2 measurement is available then adjust flow to aim for a target SpO2 of 94–98%.

SpO2 ≥ 85 – 93%: 2–4 L/minute (NC) OR 5–10 L/minute (SFM)
- Administer until a reliable SpO2 measurement is available then adjust flow to aim for a target SpO2 of 94–98%.

INH

Conditions requiring CONTROLLED or LOW DOSE oxygen therapy

SpO2 < 85%: 15 L/minute (NRBM)
- Administer until a reliable SpO2 measurement is available then adjust flow to aim for a target SpO2 of 94–98%.

SpO2 ≥ 85 – 93%: 2–4 L/minute (NC) OR 5–10 L/minute (SFM)
- Administer until a reliable SpO2 measurement is available then adjust flow to aim for a target SpO2 of 94–98%.

INH
Paediatric dosages

Significant illness AND/OR injury

<table>
<thead>
<tr>
<th>FR</th>
<th>PTO</th>
<th>ACM</th>
<th>ACP2</th>
<th>CCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>15 L/minute (BVM/NRBM) – BVM is only to be used if the patient requires positive pressure ventilation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – Critical illnesses in adults requiring HIGH levels of supplemental oxygen

- Cardiac arrest OR resuscitation
- Shock
- Sepsis
- Major trauma
- Trauma in pregnancy
- Near-drowning
- Anaphylaxis
- Major pulmonary haemorrhage
- Major head injury
- Carbon monoxide poisoning
- Active seizure
- Hyperkalaemia

Table 2 – Serious illness in adults requiring MODERATE levels of supplemental oxygen

- Acute hypoxaemia (cause unknown)
- Acute asthma
- Pneumonia
- Lung cancer
- Post-operative breathlessness
- Acute heart failure
- Pulmonary embolism
- Pleural effusion/s
- Deterioration of lung fibrosis or other interstitial lung disease
- Severe anaemia
- Pneumothorax
- Sickle cell crisis

Table 3 – COPD and other conditions in adults requiring CONTROLLED or low dose supplemental oxygen

- COPD
- Exacerbation of cystic fibrosis
- Chronic neuromuscular disorders
- Chest wall disorders
- Morbid obesity

Table 4 – Conditions in adults NOT requiring supplemental oxygen unless the patient is hypoxaemic

- AMI/ACS
- Pregnancy and obstetric emergencies
- Stroke
- Headache
- Post convulsion
- Abdominal pain
- Hyperventilation or dysfunctional breathing
- Most poisonings and drug overdoses (excluding carbon monoxide poisoning – refer to Table 1)
- Poisoning with paraquat OR bleomycin use
- Metabolic and renal disorders
- Acute or subacute neurological and muscular conditions producing muscle weakness
- Glycaemic emergencies
- Heat exhaustion/stroke
- Cardiac rhythm disturbances
- Non-traumatic chest pain
- ICD firing
- GI haemorrhage
ADULT OXYGEN ADMINISTRATION ALGORITHM

Known or suspected carbon monoxide poisoning?

- **N**

Known or suspected paraquat poisoning?

- **N**

Critical illness requiring **HIGH levels of O2?**

- **Y**
 - **SpO₂ ≥ 88%**
 - **SpO₂ > 93% AND VSS normal**

Serious illness requiring **MODERATE levels of O2?**

- **Y**
 - **SpO₂ > 93%**

Conditions requiring **CONTROLLED or **LOW DOSE** levels of O2?**

- **Y**
 - **SpO₂ ≥ 88%**

Other conditions NOT requiring O₂ unless hypoxaemic

- **Y**
 - **SpO₂ > 93%**

15 L/min (BVM/NRBM)

- **Monitor SpO₂. If saturations fall below 88%, administer the minimum amount of O₂ to maintain a target SpO₂ 88–92%.**

- **SpO₂ is < 85% administer 15 L/min (NRBM). SpO₂ 85–87% administer 2–6 L/min (NC) OR 5–10 L/min (SFM) – target SpO₂ 88–92%.**

- **Monitor SpO₂. If saturations fall below 94%, administer O₂ to maintain a target SpO₂ > 93%.**

- **Administer the maximum O₂ dose (BVM/NRBM) until the vital signs are normal, then reduce O₂ and aim for a target SpO₂ > 93%.**

- **Monitor SpO₂. If saturations fall below 94%, administer O₂ to maintain a target SpO₂ > 93%.**

- **SpO₂ < 85% administer 10–15 L/min (NRBM). SpO₂ 85–93% administer 2–6 L/min (NC) OR 5–10 L/min (SFM) – target SpO₂ > 93%.**

- **Monitor SpO₂. If saturations fall below 93%, administer O₂ to maintain a target SpO₂ > 93%.**

- **If SpO₂ < 85%, administer 10–15 L/min (NRBM). If SpO₂ 85–93%, administer 2–4 L/min (NC) OR 5–10 L/min (SFM) – target SpO₂ > 93%.**